Investigating the dependence of BOLD contrast on oxidative metabolism.
نویسندگان
چکیده
Most functional magnetic resonance imaging (fMRI) studies are based on measuring the changes in the blood oxygenation level-dependent (BOLD) contrast that arise from a complex interplay between cerebral hemodynamics and oxidative metabolism. To separate these effects, we consecutively applied two different stimuli: visual stimulation (black/white checkerboard alternating with a frequency of 8 Hz) and hypercapnia (inspiration of 5% CO2). Changes in cerebral blood flow (deltaCBF) and the effective transverse relaxation time (T2*) were measured in an interleaved manner by combining a previously described spin-labeling technique with BOLD-based fMRI. In six healthy volunteers, T2* was significantly longer during hypercapnia than during visual stimulation, whereas the corresponding deltaCBF values were the same at the given level of significance (P<0.01). This finding is explained by a significant increase in oxygen consumption under visual stimulation. The average T2* changes in the visual cortex related to cerebral hemodynamics and oxidative metabolism were 10.6+/-3.0% and -4.7+/-1.2%, respectively, resulting in a net increase of 5.9+/-2.3%. Although the hemodynamic effect is dominant, the increase in oxidative metabolism gives rise to a significant decrease in BOLD contrast. The calculated average change in the cerebral metabolic rate of oxygen (CMRO2), 4.4+/-1.1% (N = 6), is in excellent agreement with previous results obtained by positron emission tomography.
منابع مشابه
Metabolic and vascular origins of the BOLD effect: Implications for imaging pathology and resting-state brain function.
The blood oxygenation level-dependent (BOLD) phenomenon has profoundly revolutionized neuroscience, with applications ranging from normal brain development and aging, to brain disorders and diseases. While the BOLD effect represents an invaluable tool to map brain function, it does not measure neural activity directly; rather, it reflects changes in blood oxygenation resulting from the relative...
متن کاملThe post-stimulation undershoot in BOLD fMRI of human brain is not caused by elevated cerebral blood volume
Functional magnetic resonance imaging (fMRI) based on blood oxygenation level dependent (BOLD) contrast is the most widely used technique for imaging human brain function. However, the dynamic interplay of altered cerebral blood flow (CBF), cerebral blood volume (CBV), and oxidative metabolism (CMRO2) is not yet fully understood. One of the characteristics of the BOLD response is the post-stimu...
متن کاملBiophysical and physiological origins of blood oxygenation level-dependent fMRI signals.
After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the ...
متن کاملSimultaneous fPET and fMRI for Assessing Dynamic Neurovascular and Neurometabolic Changes
Purpose BOLD fMRI has been used extensively in neuroscience research. However, BOLD fMRI probes neural activity indirectly and the signal reflects a composite change of neurovascular (hemodynamic responses) and neurometabolic (aerobic or anaerobic glucose metabolism) coupling. Neuronal activations primarily engage oxidative phosphorylation are more difficult to be detected by BOLD fMRI than tho...
متن کاملBasal cerebral blood volume during the poststimulation undershoot in BOLD MRI of the human brain.
One of the characteristics of the blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) response to functional challenges of the brain is the poststimulation undershoot, which has been suggested to originate from a delayed recovery of either cerebral blood volume (CBV) or cerebral metabolic rate of oxygen to baseline. Using bolus-tracking MRI in humans, we recently showed th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Magnetic resonance in medicine
دوره 41 3 شماره
صفحات -
تاریخ انتشار 1999